1. The structure of molecule **Z** is shown below.

Which of the following statements is/are true?

- 1: The carbon-13 NMR spectrum of **Z** shows four peaks
- 2: The proton NMR spectrum of **Z** shows five peaks
- 3: The proton NMR spectrum of \mathbf{Z} run in D_2O shows three peaks
- **A** 1, 2 and 3
- **B** Only 1 and 2
- C Only 2 and 3
- **D** Only 1

Your answer	

[1]

2. A chemist isolates compound L, with empirical formula C₃H₆O, and sends a sample for analysis. The analytical laboratory sends back the following spectra.

Mass spectrum

Molecular ion peak at m/z = 116.0.

¹H NMR spectra

The numbers next to each signal represent the number of ${}^{1}H$ responsible for that signal. Two ${}^{1}H$ NMR spectra were obtained: one without $D_{2}O$ and one with $D_{2}O$ added.

¹H NMR spectrum with no D₂O:

¹H NMR spectrum with D₂O added:

© OCR 2014 H432/02

Use the information provided to suggest a structure for compound L.

Give your reasoning.

••••••	
•••••	
	[6

© OCR 2014 H432/02

(i)

- 3. This question is about organic acids.
 - (a) Lactic acid, shown below, has two functional groups.

Lactic acid reacts with bases and with many metals.

- An aqueous solution containing 1.125 g of lactic acid is reacted with an excess of magnesium producing hydrogen gas.
- The excess magnesium is removed.
 The water is evaporated, leaving a white solid, A.
- reaction with bases:

reaction with metals:[1]

(ii) Calculate the volume of $H_2(g)$ produced, measured at room temperature and pressure.

Name the type of reaction of lactic acid with bases and with metals.

volume of $H_2 =$ [2]

(iii) What is the empirical formula of the white solid A?

......[1]

(iv) Predict two reactions of lactic acid, each involving a different functional group.

Do **not** include reactions with bases or metals.

For each reaction,

- state the type of reaction, the reagents and conditions
- draw the structures of any organic products formed.

(b)	In basic conditions, α-amino acids form anions with the general formula, RCH(NH ₂)COO ⁻ . These anions can act as bidentate ligands.						
		per(II) ions can form a square planar complex with anions of the amino acid glycine ($R = H$). The are two stereoisomers of this complex, B and C .					
	(i)	Draw the skeletal formula of the anion of glycine.					
			[1]				
	(ii)	Draw diagrams of stereoisomers B and C .					
		In your structures, show the ligands as skeletal formulae.					
			[2]				
			(-)				
	(iii)	Anion ligands of the amino acid alanine ($R = CH_3$) would be expected to form more than two square planar stereoisomers with copper(II) ions.)				
		Explain this statement.					
			••				
			[1]				

© OCR 2014 H432/03

(c) Methanoic acid is added to water. An acid-base equilibrium is set up containing two acid-base pairs.

Suggest a mechanism for the forward reaction in this equilibrium.

Your mechanism should use displayed formulae and curly arrows, and show all species present at equilibrium.

- (d) Information about a monobasic organic acid **D** is shown below.
 - **D** reacts by both electrophilic substitution and electrophilic addition.
 - The molecular formula of **D** is $C_xH_yO_2$.
 - The mass spectrum of **D** has a molecular ion peak at m/z = 148.
 - The ¹³C NMR spectrum of **D** contains seven peaks.

Determine and draw a possible structure for **D**.

Explain your reasoning from the evidence provided.

										••••	
										•••••	
										•••••	
•••••	••••••	••••••	•••••	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	•	••••••	••••••	•••••
•••••	••••••	••••••	•••••	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	•	••••••		•••••
•••••	•••••	••••••	•••••	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	•	•	••••••	•••••	•••••
•••••	•••••	••••••	•••••	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	•	••••••	••••••	•••••
											[5]
					 .						[°]

© OCR 2014 H432/03

4. The compound below is analysed by ¹H NMR spectroscopy.

How many peaks are observed in the ¹H NMR spectrum?

- **A** 5
- **B** 4
- **C** 3
- **D** 2

Your answer	
-------------	--

[1]

- **5.** A chemist analyses a naturally occurring aromatic compound.
 - (a) The percentage composition and mass spectrum of the compound are shown below.

Percentage composition by mass: C, 70.58%; H, 5.92%; O, 23.50%.

Mass spectrum

Determine the molecular formula of the compound.

Show your working.

decular formula =	13	٦

(b) Qualitative tests are carried out on the aromatic compound. The results are shown below.

Test	Acidity	Na ₂ CO ₃ (aq)	2,4-DNP	Tollens' reagent
Observation	pH = 5	No observable change	Orange precipitate	No observable change

Determine the functional groups in the compound. Explain your reasoning.
Functional groups
Explanation
[3]

(c) The carbon-13 NMR spectrum of the compound is shown below.

Using the spectrur Explain your reason	m and the results from (a) and (b) , determing.	ine the structure of the compound.
	Structure of compound	

_					
6.	Which compound	d is used as a	standard for NMR	chemical shift	measurements?

- \mathbf{A} Si(CH₃)₄
- **B** $CDCl_3$
- **C** D₂O
- \mathbf{D} CCl_4

Your answer	
-------------	--

[1]

7.	What is the number of peaks in the ¹ H NMR spectrum of HOOCCH ₂ CHOHCH ₂ COOH?						
	Α	3					
	В	4					
	С	5					
	D	6					
	You	ır answer	[1]				

8. Which compound shows 4 peaks in its carbon-13 NMR spectrum?

Your answer	
-------------	--

9. A compound produces the ¹³C NMR spectrum below.

Which compound could have produced this spectrum?

- **A** Propane
- B 2-Methylbutane
- **C** 2-Methylpropan-1-ol
- **D** 2-Methylpropan-2-ol

Your answer	
-------------	--

[1]

[5]

OCR (A) Chemistry A-Level - Spectroscopy

- 10. This question is about esters.
 - (a) The structure of ester A is shown below.

(i) What is the systematic name of ester A?

[1]

(ii) In the boxes, draw the organic products for the reactions of the functional groups in ester **A** shown below.

Each reaction forms two organic products.

(iii) Name the type of reactions of ester A shown in (ii).

.....[1]

(b) The protons in ester A are in four different environments, labelled 1-4 on the structure below.

$$\operatorname{Br} \overset{\mathsf{1}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}$$

Complete the table to predict the **proton** NMR spectrum of ester **A**.

Proton environment	Chemical shift	Splitting pattern
1		
2		
3		
4		

[4]

- (c) Compound B is a structural isomer of ester A.
 - Compound **B** reacts with aqueous sodium carbonate.
 - The ¹³C NMR spectrum of **B** has 4 peaks.

Draw a possible structure for compound **B**.

[1]

(d) A polyester is formed from 200 molecules of 4-hydroxybenzoic acid.

What is the relative molecular mass, $M_{\rm r}$, of the polyester?

$$M_{\rm r} =$$
 g mol⁻¹ [2]

© OCR 2019 Turn over

(e)* A student intends to synthesise ester C.

(i) Plan a two-stage synthesis to prepare 12.75g of ester **C** starting from 2-methylpropanal, (CH₃)₂CHCHO. Assume the overall percentage yield of ester **C** from 2-methylpropanal is 40%.

In your answer include the mass of 2-methylpropanal required, reagents, conditions and equations where appropriate.

Purification details are not required.	[6]
Additional answer space if required	

(ii) The mass spectrum of ester C is shown below.

Suggest possible structures for the species responsible for peaks ${\bf Y}$ and ${\bf Z}$ in the mass spectrum.

11. Analysis of an unknown organic compound produced the following results.

Elemental analysis by mass

C: 73.17%; H: 7.32%; O: 19.51%

Mass spectrum

Molecular ion peak at m/z = 164.0

¹H NMR spectrum in D₂O

The numbers by the peaks are the relative peak areas.

Use the results to suggest **one** possible structure for the unknown compound.

Show all your reasoning.	[6]

OCR (A) Cr	nemistry A-Level - Spectroscopy	PhysicsAndMathsTut
	A dalah ang langgan ang ang ang ang ang ang ang ang a	
1	Additional answer space if required	

.....

12. Which isomer of $C_6H_{12}O_2$ produces the smallest number of peaks in its ^{13}C NMR spectrum?

A 0

В

c OH

D OH

Your answer

13. Compounds **B** and **C**, shown below, are unsaturated hydrocarbons containing nine carbon atoms.

(a) Compound **B** reacts with chlorine at room temperature, but compound **C** requires the presence of a halogen carrier.

In both reactions, the organic compound reacts with chlorine in a 1:1 molar ratio.

(i) Draw the structures of the organic product of each reaction.

Organic product with B	Organic product with C

- 1	-
	-

Explain the relative resistance to chlorination of compound ${\bf C}$ compared with compound	В

(ii)

((iii)	Outline the mechanism for the reaction of compound C with chlorine.
		Show the role of the halogen carrier.
		[5]
(b)		npound C can be prepared by 'trimerisation' of propanone using concentrated sulfuric las a catalyst.
	Sug	gest an equation for this reaction, using molecular formulae.
		[3]

© OCR 2020 Turn over

(c) An organic chemist is investigating compound **D** for possible use as a medicine.

The chemist proposes a synthesis of compound **D** from compound **C**.

(i) Predict the number of peaks in the ¹³C NMR spectra of compounds **C** and **D**.

	Compound C	Compound D
Number of peaks		

(ii) The chemist develops a three-stage synthesis of compound ${\bf D}$ from compound ${\bf C}$.

Complete the flowchart.
Show structures for organic compounds.

	reagent: catalyst:	
compound C		
compound D	reagent:	1. Sn + HCl 2. Neutralise
		[5

14. Cyclopentanol can be reacted to form cyclopentene. Cyclopentene is a liquid with a boiling point of 44 °C and a density of 0.74 g cm⁻³.

A student plans to prepare 4.00 g of cyclopentene by reacting cyclopentanol (boiling point 140 °C) with an acid catalyst.

Equation

The expected percentage yield of cyclopentene is 64.0%.

Method

The student carries out the preparation using apparatus set up for distillation, as shown below.

1 The reaction mixture is heated gently, and a distillate containing impure cyclopentene is collected.

2 The distillate has an aqueous layer and an organic layer. The student purifies the cyclopentene from the distillate.

Cyc	loper	ntene	cou	ass Ild b	e ob	otair	ned '	fron	n th	e di	stilla	ate.						
Ado	dition	al an	swei	r spa	ace	if re	quir	ed										
											 -		 	 	 		 	
													 	 	 		 	 •••
													 	 	 		 	 • • •

© OCR 2020 Turn over

(b) The organic layer in the distillate was analysed by IR spectroscopy. The IR spectrum is shown below.

Explain how the IR spectrum of the organic la formed and that the reaction is incomplete.	ayer suggests that cyclopentene has been

15. An organic compound **I** is analysed, using a combination of techniques. The analytical data is shown below.

Elemental analysis by mass

C, 56.69%; H, 7.09%; N, 11.02%; O, 25.20%

Mass spectrum

Molecular ion peak at m/z = 127.0

IR spectrum

© SDBS, National Institute of Advanced Industrial Science and Technology.

Proton NMR spectrum

(a)	Explain the use of two deuterated compounds in NMR spectroscopy.
	101
	[2]

Determine the structure		
Additional answer spac	e if required	